Detect cycle in an undirected graph Java
- Get link
- X
- Other Apps
PROGRAM TO DETECT CYCLE IN AN UNDIRECTED GRAPH
import
java.io.*;
import
java.util.*;
// This class represents a
// directed graph using adjacency list
// representation
class
Graph
{
// No. of vertices
private
int
V;
// Adjacency List Represntation
private
LinkedList<Integer> adj[];
// Constructor
Graph(
int
v)
{
V = v;
adj =
new
LinkedList[v];
for
(
int
i=
0
; i<v; ++i)
adj[i] =
new
LinkedList();
}
// Function to add an edge
// into the graph
void
addEdge(
int
v,
int
w)
{
adj[v].add(w);
adj[w].add(v);
}
// A recursive function that
// uses visited[] and parent to detect
// cycle in subgraph reachable
// from vertex v.
Boolean isCyclicUtil(
int
v,
Boolean visited[],
int
parent)
{
// Mark the current node as visited
visited[v] =
true
;
Integer i;
// Recur for all the vertices
// adjacent to this vertex
Iterator<Integer> it =
adj[v].iterator();
while
(it.hasNext())
{
i = it.next();
// If an adjacent is not
// visited, then recur for that
// adjacent
if
(!visited[i])
{
if
(isCyclicUtil(i, visited, v))
return
true
;
}
// If an adjacent is visited
// and not parent of current
// vertex, then there is a cycle.
else
if
(i != parent)
return
true
;
}
return
false
;
}
// Returns true if the graph
// contains a cycle, else false.
Boolean isCyclic()
{
// Mark all the vertices as
// not visited and not part of
// recursion stack
Boolean visited[] =
new
Boolean[V];
for
(
int
i =
0
; i < V; i++)
visited[i] =
false
;
// Call the recursive helper
// function to detect cycle in
// different DFS trees
for
(
int
u =
0
; u < V; u++)
{
// Don't recur for u if already visited
if
(!visited[u])
if
(isCyclicUtil(u, visited, -
1
))
return
true
;
}
return
false
;
}
// Driver method to test above methods
public
static
void
main(String args[])
{
// Create a graph given
// in the above diagram
Graph g1 =
new
Graph(
5
);
g1.addEdge(
1
,
0
);
g1.addEdge(
0
,
2
);
g1.addEdge(
2
,
1
);
g1.addEdge(
0
,
3
);
g1.addEdge(
3
,
4
);
if
(g1.isCyclic())
System.out.println("Graph
contains cycle");
else
System.out.println("Graph
doesn't contains cycle");
Graph g2 =
new
Graph(
3
);
g2.addEdge(
0
,
1
);
g2.addEdge(
1
,
2
);
if
(g2.isCyclic())
System.out.println("Graph
contains cycle");
else
System.out.println("Graph
doesn't contains cycle");
}
}
OUTPUT:
Graph contains cycle Graph doesn't contain cycle
- Get link
- X
- Other Apps
Comments
Post a Comment