Minimum Spanning Tree Python

PROGRAM TO PRINT MINIMUM SPANNING TREE USING PRIM'S ALGORITHM



import sys # Library for INT_MAX
  
class Graph():
  
    def __init__(self, vertices):
        self.V = vertices
        self.graph = [[0 for column in range(vertices)] 
                    for row in range(vertices)]
  
    # A utility function to print the constructed MST stored in parent[]
    def printMST(self, parent):
        print "Edge \tWeight"
        for i in range(1, self.V):
            print parent[i], "-", i, "\t", self.graph[i][ parent[i] ]
  
    # A utility function to find the vertex with 
    # minimum distance value, from the set of vertices 
    # not yet included in shortest path tree
    def minKey(self, key, mstSet):
  
        # Initilaize min value
        min = sys.maxint
  
        for v in range(self.V):
            if key[v] < min and mstSet[v] == False:
                min = key[v]
                min_index = v
  
        return min_index
  
    # Function to construct and print MST for a graph 
    # represented using adjacency matrix representation
    def primMST(self):
  
        # Key values used to pick minimum weight edge in cut
        key = [sys.maxint] * self.V
        parent = [None] * self.V # Array to store constructed MST
        # Make key 0 so that this vertex is picked as first vertex
        key[0] = 0 
        mstSet = [False] * self.V
  
        parent[0] = -1 # First node is always the root of
  
        for cout in range(self.V):
  
            # Pick the minimum distance vertex from 
            # the set of vertices not yet processed. 
            # u is always equal to src in first iteration
            u = self.minKey(key, mstSet)
  
            # Put the minimum distance vertex in 
            # the shortest path tree
            mstSet[u] = True
  
            # Update dist value of the adjacent vertices 
            # of the picked vertex only if the current 
            # distance is greater than new distance and
            # the vertex in not in the shotest path tree
            for v in range(self.V):
  
                # graph[u][v] is non zero only for adjacent vertices of m
                # mstSet[v] is false for vertices not yet included in MST
                # Update the key only if graph[u][v] is smaller than key[v]
                if self.graph[u][v] > 0 and mstSet[v] == False and key[v] > self.graph[u][v]:
                        key[v] = self.graph[u][v]
                        parent[v] = u
  
        self.printMST(parent)
  
g = Graph(5)
g.graph = [ [0, 2, 0, 6, 0],
            [2, 0, 3, 8, 5],
            [0, 3, 0, 0, 7],
            [6, 8, 0, 0, 9],
            [0, 5, 7, 9, 0]]
  
g.primMST();


OUTPUT:
Edge   Weight
0 - 1    2
1 - 2    3
0 - 3    6
1 - 4    5

Comments

Popular posts from this blog

Solve the Sudoku Python

Solve the Sudoku Java

Find Duplicates Java