Hamiltonian Path Java
- Get link
- X
- Other Apps
PROGRAM TO SOLVE HAMILTONIAN CYCLE PROBLEM
class
HamiltonianCycle
{
final
int
V =
5
;
int
path[];
/* A utility function to check if the vertex v can be
added at index 'pos'in the Hamiltonian Cycle
constructed so far (stored in 'path[]') */
boolean
isSafe(
int
v,
int
graph[][],
int
path[],
int
pos)
{
/* Check if this vertex is an adjacent vertex of
the previously added vertex. */
if
(graph[path[pos -
1
]][v] ==
0
)
return
false
;
/* Check if the vertex has already been included.
This step can be optimized by creating an array
of size V */
for
(
int
i =
0
; i < pos; i++)
if
(path[i] == v)
return
false
;
return
true
;
}
/* A recursive utility function to solve hamiltonian
cycle problem */
boolean
hamCycleUtil(
int
graph[][],
int
path[],
int
pos)
{
/* base case: If all vertices are included in
Hamiltonian Cycle */
if
(pos == V)
{
// And if there is an edge from the last included
// vertex to the first vertex
if
(graph[path[pos -
1
]][path[
0
]] ==
1
)
return
true
;
else
return
false
;
}
// Try different vertices as a next candidate in
// Hamiltonian Cycle. We don't try for 0 as we
// included 0 as starting point in hamCycle()
for
(
int
v =
1
; v < V; v++)
{
/* Check if this vertex can be added to Hamiltonian
Cycle */
if
(isSafe(v, graph, path, pos))
{
path[pos] = v;
/* recur to construct rest of the path */
if
(hamCycleUtil(graph, path, pos +
1
) ==
true
)
return
true
;
/* If adding vertex v doesn't lead to a solution,
then remove it */
path[pos] = -
1
;
}
}
/* If no vertex can be added to Hamiltonian Cycle
constructed so far, then return false */
return
false
;
}
/* This function solves the Hamiltonian Cycle problem using
Backtracking. It mainly uses hamCycleUtil() to solve the
problem. It returns false if there is no Hamiltonian Cycle
possible, otherwise return true and prints the path.
Please note that there may be more than one solutions,
this function prints one of the feasible solutions. */
int
hamCycle(
int
graph[][])
{
path =
new
int
[V];
for
(
int
i =
0
; i < V; i++)
path[i] = -
1
;
/* Let us put vertex 0 as the first vertex in the path.
If there is a Hamiltonian Cycle, then the path can be
started from any point of the cycle as the graph is
undirected */
path[
0
] =
0
;
if
(hamCycleUtil(graph, path,
1
) ==
false
)
{
System.out.println(
"\nSolution does not exist"
);
return
0
;
}
printSolution(path);
return
1
;
}
/* A utility function to print solution */
void
printSolution(
int
path[])
{
System.out.println(
"Solution Exists: Following"
+
" is one Hamiltonian Cycle"
);
for
(
int
i =
0
; i < V; i++)
System.out.print(
" "
+ path[i] +
" "
);
// Let us print the first vertex again to show the
// complete cycle
System.out.println(
" "
+ path[
0
] +
" "
);
}
// driver program to test above function
public
static
void
main(String args[])
{
HamiltonianCycle hamiltonian =
new
HamiltonianCycle();
/* Let us create the following graph
(0)--(1)--(2)
| / \ |
| / \ |
| / \ |
(3)-------(4) */
int
graph1[][] = {{
0
,
1
,
0
,
1
,
0
},
{
1
,
0
,
1
,
1
,
1
},
{
0
,
1
,
0
,
0
,
1
},
{
1
,
1
,
0
,
0
,
1
},
{
0
,
1
,
1
,
1
,
0
},
};
// Print the solution
hamiltonian.hamCycle(graph1);
/* Let us create the following graph
(0)--(1)--(2)
| / \ |
| / \ |
| / \ |
(3) (4) */
int
graph2[][] = {{
0
,
1
,
0
,
1
,
0
},
{
1
,
0
,
1
,
1
,
1
},
{
0
,
1
,
0
,
0
,
1
},
{
1
,
1
,
0
,
0
,
0
},
{
0
,
1
,
1
,
0
,
0
},
};
// Print the solution
hamiltonian.hamCycle(graph2);
}
}
OUTPUT:
Solution Exists: Following is one Hamiltonian Cycle 0 1 2 4 3 0 Solution does not exist
- Get link
- X
- Other Apps
Comments
Post a Comment